skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Clancy, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider the branch-length estimation problem on a bifurcating tree: a character evolves along the edges of a binary tree according to a two-state symmetric Markov process, and we seek to recover the edge transition probabilities from repeated observations at the leaves. This problem arises in phylogenetics, and is related to latent tree graphical model inference. In general, the log-likelihood function is non-concave and may admit many critical points. Nevertheless, simple coordinate maximization has been known to perform well in practice, defying the complexity of the likelihood landscape. In this work, we provide the first theoretical guarantee as to why this might be the case. We show that deep inside the Kesten-Stigum reconstruction regime, provided with polynomially many m samples (assuming the tree is balanced), there exists a universal parameter regime (independent of the size of the tree) where the log-likelihood function is strongly concave and smooth with high probability. On this high-probability likelihood landscape event, we show that the standard coordinate maximization algorithm converges exponentially fast to the maximum likelihood estimator, which is within O(1/sqrt(m)) from the true parameter, provided a sufficiently close initial point. 
    more » « less
    Free, publicly-accessible full text available July 16, 2026
  2. Free, publicly-accessible full text available July 13, 2026